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1. Variable selection based on Bayes factors

Variable selection and model uncertainty

• In variable selection we must decide which of the individual variables
x1, . . . , xk are relevant to explain y .

y

x1 x2 xk

• Variable selection can be embedded in a Model Uncertainty framework
under which, each combination of variables defines a different model (a
total of 2k).
• The competing models can be compactly expressed using γ ∈ {0, 1}k
and

Mγ : fγ(y | γ1β1x1, . . . , γkβkxk ,ν).

• We denote |γ| =
∑k

i=1 γi .



1. Variable selection based on Bayes factors

Posterior probabilities: Bayes factors, priors and summaries

• Posterior probabilities are obtained as

P(Mγ | y) ∝ Bγ P(Mγ), γ ∈ {0, 1}k

• Bγ is the Bayes factor of Mγ to M0. It is univocally defined by fγ and
the priors πγ (Robust, hyper-g , independent, Held’s priors, ...).

Bayes factors’ idiosyncrasy

Bayes factors share a common behaviour (based on asymptotics)

Bγ ≈ eΛγ/2 × n−|γ|/2 × C (πγ , π0),

I Bγ rewards fit via Λγ , the deviance of Mγ relative to M0,

I Bγ penalizes complexity via n−|γ|/2, where |γ| is the number of
ones in γ.

For LM and g -priors: Bγ =
( 1 + n

1 + nQγ

)(n−k0)/2

(1 + n)−|γ|/2
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1. Variable selection based on Bayes factors

• P(Mγ) is the prior probability of Mγ . We normally use priors that only
depend on |γ|

P(Mγ) =
M(|γ|)( k
|γ|
) , M(·) is a p.m.f. over {0, 1, . . . , k}.

Alternatives:

I Jeffreys-Scott-Berger: M(j) = 1
k+1 ,

I Uniform: M(j) =
(k
j

)
/2k .
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• Regarding summaries, posterior inclusion probabilities are very popular

Report relevance of xi through: P(γi = 1 | y) =
∑
γ:γi=1

P(Mγ | y).

These give rise to the Median Probability Model (MPM)
[Barbieri and Berger, 2004]
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2. Latent variables

Latent variables. Approaching the concept through
examples

I How to assess the relevance of cultural level in an economic study?
By means of number of bookshops; number of cinemas; number of
theaters; number of science museums; number of modern art
museums; etc.

I How to analyse the importance of sedentarism in an epidemiological
study?
Through the number of hours using the mobile; number of hours with
videogames; frequency of usage of mobile phone and number of hours
playing sports; etc.

Latent variable Z . (A name we freely borrow from multivariate
statistics)

A hypothetical (not directly observable) construct whose relevance in a
study can only be assessed indirectly, by means of a set of observable
indicator variables z1, . . . , z` collected by the researcher.
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2. Latent variables

Latent variables

Key highlights:
• A latent variable tries to capture a
concept with a name.
• The number of indicators ` is
rather arbitrary.
• Indicators are expected to be
correlated.

The goal in this research

To develop methodology for latent (Z ) and individual (x) variable
selection from a Bayesian Model Uncertainty perspective.



2. Latent variables

Goal: which of x1, . . . , xk and/or Z1, . . . ,Zm are relevant to explain y?



2. Latent variables

An epidemiological illustration: [Wall and Li, 2003]

In n = 87 Minessota counties, relation of mortality due to respiratory
diseases RESP with ruralness and social economic status SES

Indicators:
I For ruralness

I pubwater: Per cent of
population with access to
public water,

I wood: Per cent of population
using wood to heat the home.

I For SES
I eduhs: per cent with

high-school education,
I medhhin: Median household

income (in dollars),
I percapit: Per capita income

(in dollars).
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3. The default approach

The default approach

I Solve the standard variable selection problem with all regressors
(model space with 2k+`1+···+`m).

I Obtain posterior inclusion probabilities,

I Infer about the relevance of Zj using the maximum of inclusion
probabilities of its indicators.

Latent SES ruralness
Indicator Eduhs Medhin Percapit Pubwater Wood

π(γi = 1|y) 0.36 0.39 0.32 0.14 0.97

Table: Posterior Inclusion probabilities in Wall and Li example

Conclusion

ruralness is a relevant latent variable to explain RESP while SES is not.
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3. The default approach

Questions about the default approach

I Is this a sensible approach?

I Which is the role of `1, . . . , `m?

I What is the importance of the dependence structure?

We addressed these questions using a simulated experiment.
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3. The default approach

Simulation scheme: Data generative model

• Four latent variables, Z1,Z2,Z3,Z4 that are a linear combination of a
large number (`∗ = 50) of zero mean multivariate normal indicators

Zj =
1√

V (
∑50

h=1 zjh)

50∑
h=1

zjh, j = 1, 2, 3, 4,

• The indicators forming each latent have correlations: ρ1 = ρ3 = 0.9,
ρ2 = ρ4 = 0.6.
• The data generative model is

y = 1 ∗ Z1 + 1 ∗ Z2 + 0 ∗ Z3 + 0 ∗ Z4 + N(0, 1) (n = 50)

• 100 datasets were generated this way



3. The default approach

Simulation scheme: Oracle results

Z1 Z2 Z3 Z4
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Z1 Z2 Z3 Z4

ρj 0.9 0.6 0.9 0.6
βj 1 1 0 0

Table: Details of Data Generative process



3. The default approach

Simulation scheme: emulating a real situation and
performance of default approach

As in a real situation:

I We only have access to a certain number of indicators per each latent
` ∈ {5, 10}.

I Perform the default approach, retaining the maximum of the posterior
inclusion probabilities of the indicators.
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• The default approach severely
dilutes the strength of true signals.
Worst when correlation is high.
• This effect is amplified when `
increases (which is highly
unsatisfactory).
• It underestimates the probability of
false signals.
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3. The default approach

Everything goes wrong with the default approach

These observations are a clear manifestation of the [Barbieri et al., 2021]
[BBGR] paper:

BBGR: highly correlated variables fail to cooperate

The Median Probability Model may well not include any covariates that
are highly correlated. (Inclusion probabilities are low)
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4. Grouped Bayes factors

The case with one latent variable

Individual Latent (Z ) Cardinality
y x1 · · · xk z1 · · · z`

γ1 · · · γk δ1 · · · δ` 2k+`

γ1 · · · γk τ 2k+1

Where

I γ = (γ1, . . . , γk); γi = 1 if xi is active and zero otherwise.

I Similarly variable zi is active if δi = 1 (and zero otherwise)

I τ = 1 (Z active) if δi = 1 for any i .

Recall: each combination (γ, δ) defines a model and we have a Bayes
factor Bγ,δ(y) for it.
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4. Grouped Bayes factors

Bγ,τ (y)
Grouped Bayes factor of Latent active vs. the
null

Bγ,1(y) =
∑

δ∈{0,1}`−(0,...,0)

πZ (δ)Bγ,δ(y),

Bγ,0(y) = Bγ,0(y)

Notice Bγ,τ (y)

I is an actual Bayes factor.

I is a weighted average of 2` − 1 single Bayes factors.

The question is how to specify the “prior” πZ (δ).



4. Grouped Bayes factors

About πZ (δ). Default objective candidates

πZ (δ) =
MZ (|δ|)(

`
|δ|
)

Mimicking standard proposals in VS, alternatives are

I Uniform: MZ (j) =
(`j)

2`−1
, j = 1, . . . , `.

I JSB: MZ (j) = 1
` , j = 1, . . . , `.

The second alternative is the solution in [Garćıa-Donato and Paulo, 2022]
proposed to handle qualitative variables (factors).

We thought this was the solution, but realized of a

strange phenomenon:

For moderate to highly correlated indicators Bγ,τ (y) (highly)
underestimates the effect of relevant latent variables.
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proposed to handle qualitative variables (factors).
We thought this was the solution, but realized of a

strange phenomenon:

For moderate to highly correlated indicators Bγ,τ (y) (highly)
underestimates the effect of relevant latent variables.



4. Grouped Bayes factors

About πZ (δ). Default objective candidates

πZ (δ) =
MZ (|δ|)(

`
|δ|
)

Mimicking standard proposals in VS, alternatives are

I Uniform: MZ (j) =
(`j)

2`−1
, j = 1, . . . , `.

I JSB: MZ (j) = 1
` , j = 1, . . . , `.

The second alternative is the solution in [Garćıa-Donato and Paulo, 2022]
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4. Grouped Bayes factors

The strange phenomenon under the lens of
[Barbieri et al., 2021]

Suppose z1, . . . , z` are copies of each other. Then just one (say z1)
encapsulates the behaviour of the latent variable

I We expected: Bγ,1(y) ≈ Bγ,1,0,...,0(y),

I but instead we got:
Bγ,1(y) ≈ Bγ,1,0,...,0(y)× H(n, `),

where H(n, `) =
∑`

j=1
MZ (j)

(1+n)(j−1)/2

Table: Values of H(`, n = 30).

` 5 10 20

JSB 0.24 0.12 0.06
Uniform 0.23 0.02 10−4.
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4. Grouped Bayes factors

The strange phenomenon

Key message (general for any Bayes factors):

All models that have any indicator active provide a similar fit. But the
great majority of those are much more complex than we would need.
These models are penalized by complexity due to the idiosincrasy of Bayes
factors, dimishing the weighted mean defining the grouped Bayes factor.



4. Grouped Bayes factors

The strange phenomenon

The different behaviour of the priors can be easily seen by a simple look at
their form:
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Notice: models that emulate how Z behaves (in terms of fit) have j small.



4. Grouped Bayes factors

Our proposal for MZ (j)

Goal:

Define MZ (j) to assign more mass to small j if the indicators {z1, . . . , z`}
are highly correlated.

Suppose ρZ is a [0,1] measure of the correlation among {z1, . . . , z`}.
We have worked with

j − 1 ∼ Binom(`− 1, p), p ∼ Beta(1, (1− ρZ )−1).

but also with something more simple inspired by Principal Components
(PC)

MZ (j) ∝ Proportion of Variance explained using the first j PCs

Extreme cases:

I MZ (j) = 1{1}(j) if the indicators are copies (and H(n, `) = 1)

I MZ (j) = 1
` (JSB) if the indicators are orthogonal.
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4. Grouped Bayes factors

Are these proposals really objective?

• These possibilities depend on the data, but only through the matrix of
regressors (the block corresponding to the indicators).

• Recall that g -priors (and essentially all conventional priors) have a
similar dependence on data.
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4. Grouped Bayes factors

The general case

Individual covs Z1 · · · Zm

y x1 · · · xk z1
1 · · · z1

`1
· · · zm1 · · · zm`m

γ1 · · · γk δ11 · · · δ1`1
· · · δm1 · · · δm`m

τ1 · · · τm

Grouped Bayes factor: (assuming wlog τ1 = 1, . . . , τr = 1 and the rest
zero)

Bγ,τ (y) =
∑

δ1∈{0,1}`1−0

· · ·
∑

δr∈{0,1}`r−0

π(Z1,...,Zr )(δ1, . . . , δr )Bγ,δ1,...,δr ,0,...,0(y),

and

π(Z1,...,Zr )(δ1, . . . , δr ) =
r∏

j=1

πZj
(δj),

and as before, specify πZj
(δj) using the corresponding correlation structure

on the indicators defining ech Zj .
To complete the prior, use over the 2m+k Grouped Bayes factors, the JSB
prior



4. Grouped Bayes factors

Computation/searching

I It can be easily seen that we are implicitly defining a prior over the
complete model space 2k+`1+···+`m .

I Hence we can apply standard samplings algorithms to obtain the
posterior distribution.

We are big fans of one of the simplest Gibbs sampling algorithm

I It is highly reliable,

I completely automatic,

I very easy to implement,

I extremely fast implementations are possible for sparse settings,

More details in [Garcia-Donato and Martinez-Beneito, 2013,
Garcia-Donato and Castellanos, 2024]



4. Grouped Bayes factors

Computation/searching

I It can be easily seen that we are implicitly defining a prior over the
complete model space 2k+`1+···+`m .

I Hence we can apply standard samplings algorithms to obtain the
posterior distribution.

We are big fans of one of the simplest Gibbs sampling algorithm

I It is highly reliable,

I completely automatic,

I very easy to implement,

I extremely fast implementations are possible for sparse settings,

More details in [Garcia-Donato and Martinez-Beneito, 2013,
Garcia-Donato and Castellanos, 2024]



5. Results

1. Variable selection based on Bayes factors

2. Latent variables

3. The default approach

4. Grouped Bayes factors

5. Results

6. Future research



5. Results

Results (in the previous simulation scheme)
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number of variables (l): 5
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0.4
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number of variables (l): 20

green:Oracle; Red: default; Blue: Ours (based on PCs).

I The approach based on grouped Bayes factors reconstructs the Oracle
(both with true and spurious latent variables).

I Slightly better as the correlation is higher and the number of
indicators increases.



5. Results

Results in the illustrative example

(In gray what we obtained with the default)

SES ruralness
Indicator Eduhs Medhin Percapit Pubwater Wood

P(= 1 | y) .92 1
P(γi = 1|y) 0.36 0.39 0.32 0.14 0.97

Table: Posterior Inclusion probabilities.

New conclusion

ruralness and SES both are relevant.



5. Results

Related Literature

There is a rich and recent literature on Bayesian approaches to variable
selection with groups of variables; a concept which is obviously connected
with ours. Nevertheless, researchers have mainly focused on situations
with

I dummies,

I basis expansions.

In these situations, the variables forming a group are structurally tied (not
conceptually tied), defining an observable entity (a qualitative variable or a
functional) (as opposed to a theoretical variable).



5. Results

Related Literature (cont’)

The authors have extended well-established methods and ideas to these
scenarios.

I Agarwal et al (24): group informed g-prior,

I Regularization with groups (like group LASSO, etc).

I Grouped spike and slab,

I Group sparsity.
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6. Future research

Short term

I Other examples, other responses, other Bayes factors;

I Very large model spaces (pathway genes);

I Interpretation of the individual inclusion probabilities?

I Connections with other informed prior distribution (dilution priors)

Medium term

I Our approach opens the possibility of studying more complex
structures and a promising path to Bayesian confirmatory Factor
analysis (BCFA).

Science fiction

I A succesful implementation of the above BCFA would open the
possibility of Bayesian methods to exploratory Factor analysis in
which the latent variables are to be “discovered”.
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